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Polygenic risk scores improve CAD risk
prediction in individuals at borderline and
intermediate clinical risk

Check for updates

Dariusz Ratman1,4, Placede Tshiaba1,4, Michael Levin2, Jiayi Sun1, Tate Tunstall1, Robert Maier1,
Premal Shah1, Matthew Rabinowitz1,3, Daniel J. Rader2, Akash Kumar1 & Kate Im1

Polygenic risk scores (PRSs) can improve clinical risk tools for coronary artery disease (CAD). This
study assessed a risk model integrating PRS across populations, focusing on individuals with
borderline/intermediate clinical risk. We developed ancestry-specific ensemble models combining
multi-ancestry PRSs for CAD and type 2 diabetes. The cross-ancestry PRS (caPRS) was integrated
with the Pooled Cohort Equations (PCE) to derive the cross-ancestry Integrated Risk Score (caIRS),
estimating 10-year CAD risk. The caIRS outperformed the PCE across four cohorts, including UK
Biobank and Penn Medicine Biobank, with significant improvements for Hispanic and South Asian
individuals. For those at borderline/intermediate PCE risk (5–20%), the caIRS reclassified between
7.0% and 10.7% into the high-risk group, which had higher CAD incidence and hazard ratios ranging
from 3.20 to 3.84. The CAD caIRS, combining genetic and clinical factors, enhances high-risk CAD
identification across diverse populations, potentially improving treatment guidance.

Coronary artery disease (CAD) is the leading cause of death in the United
States1. An estimated 20.5 million Americans 20 years of age or older have
prevalent CAD2. Development of CAD is influenced by several factors,
including age, sex, genetics, lifestyle, and comorbidities3. However, CAD is
preventable, making it a focus of public health efforts to reduce risk through
lifestyle therapies and clinical intervention3.

The American College of Cardiology/American Heart Association
(ACC/AHA) Task Force on Clinical Practice Guidelines currently recom-
mends using the Pooled Cohort Equations (PCE) Atherosclerotic Cardio-
vascular Disease (ASCVD) risk tool to estimate 10-year risk of a first
ASCVD event and to guide decisions on preventive interventions in
asymptomatic adults 40–75 years of age4,5. The PCE model includes a
limited number of established cardiovascular risk factors: age, race, sex,
systolic blood pressure, total cholesterol level, high-density lipoprotein
cholesterol (HDL-C) level, diabetes status, and smoking status4. However, it
does not take into account family history or genetic risk and only has two
categories of race, Black/African-American andWhite4. It is also limited by
its focus on 10-year risk and does not include individuals younger than 40,
both of which make it less useful in younger adults.

The calibration of the original PCEmodel has been demonstrated to
vary depending on the target cohort and its characteristics6,7. As a con-
sequence, current guidelines recommend considering additional risk-
enhancing factors to guide preventive interventions in case of borderline

(5-7.5%) and intermediate PCE risk (7.5–20%)5. Polygenic risk scores
(PRSs), which aggregate information about genetic liability of disease
across thousands or millions of genetic variants, have the potential to
improve the accuracy of clinical risk prediction tools such as the PCE8.
Recent studies integrating a CAD PRS with traditional risk factors have
shown improved risk prediction for CAD9,10, and PRSs have been
recognized as potential risk-enhancing factors for CAD risk prediction in
a recent AHAScientific Statement11. Nevertheless, generalizability across
cohorts and populations remains a major challenge for CAD PRS
models. A major factor limiting generalizability has been the paucity of
large genetic studies among individuals with diverse genetic back-
grounds, and most studies to date have largely validated their models in
non-US based populations.

We sought to enhance the performance of CAD risk prediction across
diverse populations by constructing a cross-ancestry Integrated Risk Score
(caIRS) model. This model combines established clinical risk factors with a
cross-ancestry PRS (caPRS) to account for population differences often
overlooked in traditional PRS models. The caPRS methodology builds on
the previously described model for Breast Cancer risk prediction12, which
leverages continuous ancestry estimates and population-specific effect size
estimates to better tailor risk prediction for genetically diverse populations
and further improves it by replacing single PRSmodels with optimized PRS
ensemble scores. The caIRS provides a unified framework that integrates
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genetic predisposition and traditional clinical predictors. We evaluated the
caPRS and caIRS using 4 independent validation cohorts, including a
contemporary US-based cohort from the PennMedicine Biobank (PMBB).
We specifically assessed the utility of the caIRS as a screening tool to identify
high-risk individuals who have uncertain risk based on traditional risk
assessments for CAD and may benefit from early intervention.

Results
Wevalidated theperformanceof theCADcaPRSand caIRS inprospectively
predicting the 10-year risk of incident CAD using 4 independent, multi-
ancestry validation cohorts and compared the predictive performance of the
caIRS to that of the PCE model. The corresponding validation cohort
characteristics are presented in Table 1.

Predictive power of the caPRS in 10-year incident CAD risk
prediction across ethnicities
To evaluate the predictive performance of the caPRS in estimating the 10-
year risk of incident CAD, we used a Cox PHmodel, adjusting for baseline
age and sexwithin eachvalidation cohort anddistinct self-reported ethnicity
groups, analyzed independently.

The association between caPRS and 10-year CAD incidence was sta-
tistically significant at the 0.05 level across all 4 validation cohorts. The
overall HR per SD ranged from 1.41 to 1.79 with a corresponding C-index
from0.72 to0.77 (Fig. 1a andb).The caPRSwas significantly associatedwith
incident CAD across all (self-reported) ethnic subgroups. The strongest
associations observed in Hispanic (HR per SD: 1.69; 95% CI, 1.24–2.30),
East Asian (Asian American) individuals (HR per SD: 1.77; 95% CI,
1.62–1.93) and South Asian individuals (HR per SD: UKB, 1.82; 95% CI,
1.43–2.32) were comparable in magnitude to the effects observed among
White population (HR per SD ranging from 1.47 to 1.82). However, the
associationwas relativelyweaker in theBlack/AfricanAmerican individuals,
with an HR per SD of 1.35 (95% CI, 1.07–1.80).

We additionally assessed PRS-based risk stratification among indivi-
duals at uncertain (borderline/intermediate) clinical risk (PCE) (Fig. 1c and
d).Within theWhite population, high caPRS (top 20%)was associatedwith
a 10-year CAD incidence of 27.5% (95% CI, 23.2–31.5) as compared to
14.0% (95% CI, 12.0–15.9) and 8.9% (95% CI, 6.5–11.2) for those with
average (mid 40–60%) and low (bottom 20%) PRS. While in the case of
Black/African-American population, high PRS was associated with a CAD
incidence of 14.6%(95%CI, 9.6–19.4) comparedwith 8.8 (95%CI, 6.5–11.1)
and 5.0% (95% CI, 1.4–8.4) for those with average and low PRS.

We observe a similar stratification of individuals at <5% and ≥20%
clinical risk with individuals in the top 20% of caPRS having a higher
incidence of disease overall in validation cohorts (Supplementary
Figs. 1 and 2).

In head-to-head comparison, the caPRS model demonstrated
improved performance compared to the recently developed multiancestry
GPSMult9 model (and other models from PGS catalog), specifically within
EastAsian/AsianAmerican andBlack/African-American populations, with
equivalent performance to GPSMult in pooled analysis across all popula-
tions (Supplementary Fig. 3).

Evaluation of the caIRS in comparison to PCE
We developed the caIRS model by combining the caPRS with the PCE,
which serves as the current standard for assessing ASCVD risk within the
US. We compared the performance of the caIRS to the PCE alone in the
identification of individuals at high risk of developing CAD over a 10-year
period.

The caIRSmodel consistently outperformed thebaselinePCEacross all
validation cohorts, exhibiting improvements in discrimination as reflected
by the C-index. The improvements ranged from 1.5 percentage points in
MESA to 3 percentage points in UKB (Table 2). When using a fixed clas-
sification threshold of 20%, corresponding to ACA/AHA “high risk”
threshold5, we observed a consistent increase in sensitivity, PPV, and NPV
across all validation cohorts with a marginal decrease in specificity, except

for in MESA (Table 2). This improvement was further corroborated by the
positive and significant NRI values, which ranged from 5.9% (95% CI,
1.2–11.3) inMESA to 9.8% (95%CI, 8.3–11.5) inUKB (Table 2). The caIRS
also outperformed the baseline PCE model when using lower classification
thresholds of 7.5% and 10%, with the exception of the MESA cohort where
the overall NRI did not reach statistical significance (Supplementary Table
1). Those alternative risk thresholds correspond to the recommendation for
statin initiation by theUS Preventive Services Task Force Recommendation
Statement (7.5%)13 and European Prevention Guidelines (10%)14.

When examining self-reported ethnicity subgroups, the caIRS also
surpassed the performance of the PCE model, with the most significant
improvements seen among Hispanic (PMBB) and South Asian (UKB)
individuals, where the NRI reached 16.2% (95% CI, 6.1–25.8) and 15.0%
(95% CI, 6.1–24.2), respectively (Supplementary Table 2).

We also assessed the calibration of both the baseline PCE and caIRS
models and found that both tended to overestimate the risk, mainly in the
UKB andMESA cohorts, where CAD incidence is relatively lower, and, to a
lesser extent inARIC (Supplementary Fig. 4). The calibrationwas best in the
case of the PMBB cohort where the average predicted risk only slightly
deviated from the observed incidence for both models (PCE: 8.4%; caIRS:
8.8%; actual incidence: 8.2%).

Refining CAD risk stratification in intermediate/borderline risk
individuals
Decisions on the initiation and intensity of statin therapy for individuals
with a borderline/intermediate PCE risk depend on the presence of one or
more risk-enhancing factors, such as family history of ASCVD, metabolic
syndrome, and chronic kidneydisease3. In its recent scientific statement, the
AHA/ACC also recognized PRS as a potential risk-enhancing factor11.

To understand the utility of the caIRS in refining clinical risk estimates,
we tested its performance among the subset of individuals classified as
borderline/intermediate risk by the standard PCE. We used the recom-
mendedPCE risk threshold of 5% to less than20% to assign subjects into the
borderline/intermediate risk group and applied a 20% threshold to identify
individuals who would be considered at high risk when PRS is factored into
risk estimation. This 20% risk threshold corresponds to aClass IAHA/ACC
recommendation for statin initiation5.

Across all validation cohorts, we observed a clear separation in the 10-
year cumulative incidence of CAD between the high caIRS (≥20%) group
and all others (<20%) (Fig. 2). The largest difference was observed in the
PMBB where the 10-year cumulative incidence of CAD in the high caIRS
group was 36.8% (95% CI, 31.3–41.8), compared to 11.6% (95% CI,
10.4–12.8) in all others and 14% (95% CI, 12.8–15.2) in the overall bor-
derline/intermediate PCE group. Importantly, the caIRS model identified
additional cases which would have been otherwisemissed by the PCE alone
with sensitivity ranging between 19.0% (MESA) and 26.8% (UKB). In
PMBB, where the baseline PCE model demonstrated best calibration, the
caIRS was able to reclassify 163 of 622 cases (26%) as high risk.

We observed consistent risk stratification results across all validation
cohortswith theHR for 10-yearCAD for the high caIRS group compared to
all others (classified as borderline/intermediate by the PCE) ranging
between 3.20 and 3.84 (Fig. 2).

Refining CAD risk stratification among Black/African-American
population at intermediate/borderline risk
To assess the reclassification performance across self-reported eth-
nicity groups, we independently applied the caIRS to Black/African-
American and White individuals at the borderline/intermediate PCE
risk within the PMBB cohort (Fig. 3). The Black/African-American
population reclassified into the high-risk group by the caIRS
experienced significantly elevated CAD risk (P < 0.001) with the HR
between the high-risk caIRS group and all others 4.21 (95% CI,
2.12–8.35) comparable to the White population (HR, 3.48; 95% CI,
2.86–4.25) and the observed 10-year incidence of CAD consistent
with the expected high-risk threshold.
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Fig. 1 | CoxPHmodel results for the association between caPRS and10-yearCAD
incidence across validation cohorts and self-reported ethnicity groups. a caPRS
Hazard Ratio (HR) adjusted for age and sex and b the corresponding C-index of the
Cox PHmodel. Values on the left correspond to the plotted point estimates and their

95% CI. Cohort labels include count of incident cases and the total. META corre-
sponds to the meta analysis of underrepresented ethnicities. c, d PRS stratified
cumulative incidence of CAD among the borderline/intermediate (PCE) risk group
for the White and African-American populations, respectively.
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Discussion
We developed and validated an integrated risk score for prediction of CAD
in individuals of diverse ancestries by combining a caPRSwith the PCE risk
estimator, a commonly used tool to predict 10-year risk of a first ASCVD
event4,5. Unlike prior studies that predominantly focused on European
populations, we utilized genetically diverse development cohorts, ensuring
broader applicability. To construct the CAD caPRS, we incorporated
ensemble PRS into the previously described caPRS development
framework12. The caIRS further integrates caPRS and clinical risk factors
into a unified risk prediction and includes a calibration constant to ensure
that the average risk based on caIRS alignswith the average risk predictedby
PCE alone for unaffected controls within each decile of the PCE score. Our
study builds on prior efforts to improve PRS performance across diverse
populations9,10 and demonstrates that the caPRS significantly improves risk
prediction for CAD in individuals of diverse ancestries beyond traditional
risk factors. Through extensive validation using 4 independent cohorts,
including the contemporary US-based PMBB, our results add to the
growing body of evidence supporting potential utility of PRSs in refining
risk estimates for CAD and improving primary prevention efforts.

Current screeningparadigms for primarypreventionofCADin theUS
do not account for genetic risk factors and fail to identify individuals at high
polygenic risk15, which represents a missed opportunity for preventive
interventions. We designed our study with the goal of building a PRS and
integrated model applicable across multiple ancestries, including those
traditionally underrepresented in GWAS studies. By incorporating multi-
ethnic GWAS summary statistics16–21 in PRS ensemble construction and
including non-European cohorts (Table 3) in the caPRS and caIRS devel-
opment, we were able to obtain a model with a strong discrimination
capacity across multiple ancestries. This is exemplified by the robust asso-
ciation of the caPRS (HR per SD)with incident CAD inAsian andHispanic
individuals, comparable in magnitude to White individuals. Similarly, we
observed notable improvements in classification metrics when comparing
the caIRS model with PCE with a NRI of 16.2% (95% CI, 6.1–25.8), 15.0%
(95% CI, 6.1–24.2), and 9.8% (95% CI,−13.3–34.0) for Hispanic (PMBB),
South Asian (UKB), and East Asian (Asian American, MESA) ethnicities,
respectively.

Improved risk assessment for CAD has the potential to substantially
impact the use of preventive interventions. Our results demonstrate that the
caPRS and integrated model can efficiently refine risk estimates for indivi-
duals in the borderline and intermediate PCE risk categories, including
Black/African-American population, traditionally underrepresented in
genetic research. In the case of PMBB, where both (caIRS and PCE)models
were well calibrated, the caIRS reclassified 9.7% of the borderline/inter-
mediate risk subjects into the high-risk group which experienced almost
four-fold increase in CAD incidence. By validating the caIRS across diverse
cohorts with varied population structures and case definitions, we
demonstrated the robustness of our methodology in real-world applica-
tions. For example, if all individuals reclassified as high risk (starting with
those in the borderline/intermediate clinical risk category) initiated statin
use andweassume taking statins results in a 25%reduction inCADevents22,

then we can extrapolate that 1 additional event over 10 years could be
prevented for every 179 individuals screened using the caIRS based on
performance in our three US validation cohorts (PMBB, ARIC, MESA).
This estimated reduction in events may be even greater as a number of
studies reported that patients in the high end of the polygenic risk spectrum
experience higher relative and absolute risk reduction from cholesterol-
lowering medications, such as statins or PCSK9 inhibitors23,24.

Despite improvements in reclassification of Black/African-American
individuals at borderline/intermediate clinical risk (when using caPRS and
caIRS), the overall performance within this population was attenuated
compared to other ethnicities. This likely reflects the reduced availability of
GWAS summary statistics and individual-level data for PRS development,
which is further compounded by the high genetic diversity of the African
population25,26. In addition, recent studies demonstrated a continuous decay
of PRS performance as the sample’s genetic distance from the training
cohort increases27. This may further contribute to attenuated performance
as the PRS developed in this study relied primarily onGWASs derived from
European and Asian populations. Significant performance improvements
will require access to larger GWAS studies with better representation of
African individuals. The on-going initiatives to improve the diversity in
genetics research, such as the All of Us research program28, and Million
Veterans Program29 are expected to contribute to reducing the gap in PRS
performance, but existing limitations should be carefully considered asPRSs
begin to enter clinical practice.

The results presented here underscore the value of PRS as a risk-
enhancing factor for CAD and warrant further prospective validation in a
real-world setting. The NHGRI-funded eEMERGE-IV consortium is cur-
rently assessing the clinical impact of incorporating PRS for several condi-
tions, includingCAD, intoagenome-informedrisk assessment anddelivering
this to the EHRwith clinical decision support30. In addition, we are currently
embarking on a prospective clinical study to assess the utility of the CAD
caIRS in primary prevention (trial registration number: NCT06542432).

Our studyhas some limitations. First, this studyonly examinedCADas
an outcome, whereas the PCEwas developed to predict the risk of ASCVD,
which also includes fatal and nonfatal stroke.

Second, in line with previous studies6,7, we observed that the baseline
PCEmodel tended to overestimate the risk to various extents depending on
the target cohort. This was especially evident in the case of the UKB cohort,
which is generally biased towards healthier individuals and where CAD
incidence rates are lower than inUS cohorts31. Nevertheless, we consider the
original PCEmodel as themost appropriate baseline for comparison as this
is themodelwhich is being used for risk assessment in clinical practice in the
US. We observed the best calibration in PMBB, which is a contemporary
US-based health system. However, this may not be the case across all US
populations and in a real-world setting recalibration of themodel to a given
health-system population could be considered if necessary6.

Third, this study did not evaluate use of the caIRS in guiding treatment
decisions or improving patient outcomes in a clinical setting. Additional
prospective, real-world evidence is needed to support the utility of caIRS in
this context.

Table 2 | Comparative performance of the PCE and caIRS across validation cohorts

Model Cohort N (cases) NRI (95% CI) Sensitivity Specificity PPV NPV C-index (95% CI)

PCE ARIC 11008 (774) – 28.7 92 21.3 94.5 0.758 (0.743–0.773)

caIRS 9.51 (6.44–12.48) 39.7 90.5 24 95.2 0.783 (0.768–0.798)

PCE MESA 4162 (240) – 39.6 81.7 11.7 95.7 0.717 (0.689–0.746)

caIRS 5.86 (1.16–11.32) 42.9 84.3 14.3 96 0.732 (0.704–0.761)

PCE PMBB 14182 (1158) – 29.4 91.3 23.1 93.6 0.732 (0.719–0.746)

caIRS 9.08 (6.63–11.59) 39 90.8 27.4 94.4 0.761 (0.747–0.774)

PCE UKB 120590 (3050) – 25.5 93.8 9.6 98 0.767 (0.759–0.774)

caIRS 9.84 (8.32–11.47) 37.6 91.5 10.3 98.3 0.797 (0.79–0.804)

The Sensitivity, Specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV), and Net Reclassification Improvement (NRI) values correspond to the 20% risk classification threshold.
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Fourth, the largest development and validation cohort in this study
was UKB. This is not ideal given that most individuals are of European
ancestry and there is a lower incidence of CAD compared to the US
cohorts. Despite these issues, the caIRS model outperformed the PCE
across all validation cohorts. Future studies utilizing more diverse
biobanks in the development and validation process should be con-
ducted to further improve performance and generalizability of the
caIRS model.

Fifth, the study was restricted to individuals aged 40–79, the age range
for which the PCE is intended to be used. However, PRS may be most
effective in a prevention setting among a younger population for whom
current clinical risk factor-based tools are not well developed or recom-
mended. A recent study showed that the incidence of very early-stage
atherosclerosis increased with PRS quintile32.

Finally, we excluded individuals on lipid-lowering medication, a
potential population that could benefit from earlier screening and

Fig. 2 | 10-year cumulative incidence of CAD among individuals identified as
borderline or intermediate risk using PCE and those reclassified into high and
low-risk groups by caIRS with the corresponding 10-year cumulative incidence

rates (+/− 95% CI), counts of individuals (N) and events (N event) for
each group. a UKB, b ARIC, c MESA, d PMBB.
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intervention using the caIRS. Long-term, prospective studies are needed to
determine if identifying individuals at higher genetic risk at an earlier age
and before statin initiation has an impact on CAD outcomes.

In summary, our study adds to the growing evidence that genetics can
meaningfully improve the accuracy of CAD risk prediction, beyond tradi-
tional clinical risk factors, in individuals of diverse ancestries. The CAD
caIRS, a tool that combines clinical and genetic risk, has the potential to
improve the identificationof individuals at high risk forCAD,particularly in
populations underrepresented in current risk assessment tools, such as
Black/African-American population. Future research should focus on
validating the CAD caIRS in larger diverse populations and assessing its
utility in guiding clinical decisions for primary prevention of CAD.

Methods
Study populations
We used genotype and phenotype data from multiple cohorts to develop
and validate the CAD caIRS. These cohorts included the UK Biobank
(UKB), Multi-Ethnic Study of Atherosclerosis (MESA, dbGAP study
phs000209.v13.p3), Atherosclerosis Risk in Communities study (ARIC,
dbGAP study phs000280.v8.p2), Hispanic Community Health Study
(HCHS, dbGAP study phs000810.v1.p1), Cardiovascular Health Study
(CHS, dbGAP study phs000287.v7.p1), Jackson Heart Study (JHS, dbGAP
studies phs000286.v6.p2), and PennMedicine BioBank (PMBB)33. Written
informed consent was obtained from all participants prior to their inclusion
in each cohort study. Individuals inARIC andCHSwere part of the training
cohort for the PCE model4. However, given that our validation focused on
comparison of the performance of the caIRS to the PCE (and CHS was not
used for validation), we do not expect it to be biased.

The UK Biobank (UKB) is a large, prospective, cohort study of the
causes, treatment, and prevention of common complex disease34,35. Between
2006 and2010, the study enrolled over 500,000 individuals aged 40–69 years
from the general population of the United Kingdom. At enrollment, par-
ticipants completed a detailed questionnaire to self-report sex, ancestry,
lifestyle factors, and environmental exposures and underwent extensive
physical examination, including cardiac imaging and monitoring, and
collection and storage of biological samples (blood, urine, and saliva)36,37.
Participants have now been followed up for over a decade and have a wide
range of biomarker and genetic data, including whole exome and genome
sequences, available for all 500,000 participants35.

The Multi-Ethnic Study of Atherosclerosis (MESA, dbGAP study
phs000209.v13.p3) is a medical research study investigating the prevalence,

correlates, and progression of subclinical cardiovascular disease (CVD) in a
population-based sample of more than 6000 men and women aged 45-84
years and free of CVD at baseline from 6 communities in the United States
(NewYork, NY; Baltimore,MD; Chicago, IL; Los Angeles, CA; Twin Cities,
MN; and Winston Salem, NC). Recruitment took place between 2000 and
200238,39. The cohort is approximately 38%White, 28% African-American,
22%Hispanic, and12%Asian, predominantly ofChinese descent. Extensive
cohort data were collected over 6 exams, with participants contacted every 9
to 12 months during the study to assess clinical morbidity and mortality.
The study collected a comprehensive set of data for standard coronary risk
factors and various aspects of cardiovascular health as well as socio-
demographic factors, lifestyle factors, and psychosocial factors. Selected
measures of subclinical disease and risk factors were repeated at follow-up
visits through 2018 allowing study of the progression of disease. Blood
samples, DNA, and lymphocytes were collected and preserved. Participants
are followed for identification and characterization of CVD events,
including acute myocardial infarction and other coronary heart disease,
stroke, peripheral vascular disease, and congestive heart failure; therapeutic
interventions for CVD; and mortality40,41.

The Atherosclerosis Risk in Communities study (ARIC, dbGAP study
phs000280.v8.p2) is a prospective epidemiologic study (1987 to present)
conducted in 4 US communities (Forsyth County, NC; Jackson, MS; the
northwest suburbs of Minneapolis, MN; and Washington County, MD).
TheARIC is investigating the etiology andnatural history of atherosclerosis,
the etiology of clinical atherosclerotic diseases, and variation in cardiovas-
cular risk factors, medical care, and disease by race, gender, location, and
date. The ARIC study includes 2 components: a cohort and community
surveillance.Thepresent studyuseddata fromthe cohort component. In the
cohort component, over 15,000 participants, aged 45-64 years, were
recruited between 1987–1989 and received an extensive examination,
includingmedical, social, and demographic data. Data collection took place
during 7 clinic visits between 1987 and 201942.

The Hispanic Community Health Study / Study of Latinos (HCHS/
SOL, dbGAP study phs000810.v1.p1) is a prospective, multi-center, epi-
demiologic study in Hispanic/Latino populations to determine the pre-
valence of chronic conditions (eg, CVD, diabetes, and pulmonary disease),
identify risk and protective factors, and quantify all-cause mortality, fatal
and non-fatal CVD and pulmonary disease, and pulmonary disease
exacerbation over time. Between 2008 and 2011, over 16,000 men and
women, aged 18–74 years, of Cuban, Dominican, Mexican, Puerto Rican,
Central American, and South American backgrounds were recruited

Fig. 3 | Reclassification of the borderline/intermediate PCE risk group using caIRS among Black/African-American andWhite individuals in PMBB. aObserved 10Y
incidence of CAD for high (>=20%) and low caIRS (<20%) and b the corresponding hazard ratios for the high vs low caIRS groups.
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through 4 centers (Miami, Florida; Bronx, New York; Chicago, Illinois; and
SanDiego,California). Participants underwent an extensive baseline clinical
examination, including biological, behavioral, and socio-demographic
assessments. To determine a range of health outcomes, participants
underwent 2 additional clinic visits between 2014 and 2017 and 2020 and
2023 and have annual follow-up interviews43,44.

The Cardiovascular Health Study (CHS, dbGAP study
phs000287.v7.p1) is a prospective study of risk factors for development and
progression of coronary heart disease and stroke in people aged ≥65 years.
The study enrolled approximately 6000 participants from 4 US commu-
nities (Forsyth County, NC; Sacramento County, CA;Washington County,
MD; and Pittsburgh, PA) between 1989 and 1990 and a supplemental
cohort of 687 predominantly African-American participants between 1992
and 1993. The study participants have undergone extensive clinic exam-
inations for evaluation of markers of subclinical CVD at study baseline and
at annual visits through 1998-1999 and again in 2005–2006. They have also
been followed up every 6months by phone to identify cardiovascular events
and to assess physical and cognitive health.

The Jackson Heart Study (JHS, dbGAP studies phs000286.v6.p2) is a
large, prospective, community-based, observational study investigating
environmental and genetic factors associated with CVD among African
Americans. Between 2000 and 2004, over 5000 participants, aged 35–84
years, were recruited fromurban and rural areas of 3 counties that comprise

the Jackson, MS metropolitan statistical area45,46. Participants underwent 3
extensive clinical examinations (Exam 1, 2000–2004; Exam 2, 2005–2008;
and Exam 3, 2009–2013) that collected data on traditional and putative
cardiovascular disease risk factors and measures of subclinical CVD,
including echocardiography, cardiac magnetic resonance imaging, and
computed tomography scans, and collection of biological samples (i.e.,
blood, urine, DNA, lymphocytes). Participants receive annual telephone
follow-up and have ongoing surveillance of hospitalizations for cardiovas-
cular events and of deaths47.

The Penn Medicine BioBank (PMBB) is an electronic health record
(EHR)-linked biobank maintained at the University of Pennsylvania. The
PMBBwas established in 2013 and includes a large variety of health-related
information including diagnosis codes, laboratory measurements, imaging
data, and lifestyle information as well as genomic and biomarker data. To
date, over 174,000 participants have been enrolled, with approximately 30%
of participants being of non-European ancestry. The EHRhas amedian of 7
years of longitudinal data available on participants33.

We divided the data into 3 development cohorts (Table 3 and Fig. 4)
and 4 independent, longitudinal validation cohorts (Table 1 and Fig. 4). The
Development Cohorts comprised 26,923 individuals with diagnosed CAD
(cases) and 220,909 unaffected individuals (non-cases) from UKB (a sub-
set), HCHS, CHS, and JHS. The Validation Cohorts comprised 11,008
individuals (774 cases) from ARIC, 4162 (240 cases) from MESA, 14 182

Fig. 4 | Study cohorts and development/validation workflow. Selection of participants for the caIRS development (a) and (b) validation. c An overview of caIRS
development and validation workflow.
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(1158 cases) fromPMBB, and120 590 (3050 cases) fromUKBwhowere not
included in model development.

Eligibility criteria
Across all cohorts, we excluded individuals withmissing genotype data. In
cases where related individuals were present, we retained one individual
per pair of first and second-degree relatives. In the UKB cohort, where
whole exome sequencing data was available, we additionally excluded
individuals with pathogenic or likely pathogenic variants in 3 genes
known to cause Familial Hypercholesterolemia (APOB, LDLR, PCSK9).
We filtered whole-exome sequencing VCF files to three genes of interest,
removed variants in low complexity regions and segmental duplications,
and annotated remaining variants using SnpEff, Clinvar, and gnomad.
Pathogenic variants were designated in each of the annotations as follows:
(1) SnpEff: variants with “HIGH” predicted function effect impact, (2)
Clinvar: variants with “Pathogenic” or “Likely pathogenic” clinical sig-
nificance, (3) Gnomad: variants with <0.5% MAF. Individuals were
identified as having a pathogenic variant if they had one or more variants
that match these filters.

Individuals inDevelopmentCohorts 1 and 2were eligible for inclusion
if they were between 18 and 79 years of age at the time of diagnosis or
assessment for cases and those unaffected, respectively. We also excluded
unaffected individuals taking cholesterol-lowering medications. In the case
of Development Cohort 3 we additionally restricted the eligible age range to
40–79 and removed individuals missing any of the factors required to cal-
culate the PCE score (Fig. 4).

Individuals in the Validation Cohorts were eligible for inclusion if they
had no personal history of CAD and were 40–79 years of age at the time of
first assessment. We excluded all individuals taking cholesterol-reducing
medication at the time of first assessment, individuals who developed CAD
within 30 days of assessment, and affected individuals missing age at
diagnosis. Because the CAD caIRS was derived from the PCE, we also
excluded individuals missing any data for risk factors included in the PCE
model (see Supplementary Table 3). In the case of PMBB where the PCE
variableswere incomplete (mainly lipid values) for a relatively large subset of
eligible individuals (7796 out of 14,182), we imputed missing values using
the cohort median to avoid loss of a substantial fraction of the cohort from
the analysis. Repeating the PMBB analysis upon exclusion of participants
with missing PCE variables (instead of imputing) yielded highly consistent
results which we included for comparison (see Supplementary Table 4 and
Supplementary Fig. 5).

Genotype imputation
We combined multiple genotype data sources, which required distinct
preprocessing steps depending on the genome build and availability of
externally imputed WGS data (see Supplementary Table 5 for dataset-
specific preprocessing/imputation steps). In short, we used the existing
imputed array genotyping data for UKB and dbGAP datasets, if they were
available, and used CrossMap (v0.6.1)48 to lift over their coordinates to
Genome Reference Consortium Human Build 37 (GRCh37) where neces-
sary. For internal imputation of the array data we converted coordinates to
hg19 using array annotation (where necessary), then phased genotypes
using SHAPEIT449 and imputed unobserved genotypes with IMPUTE550

using the UK10K reference panel51. For WGS datasets we used CrossMap
(v0.6.1)48 to liftover coordinates to GRCh37. In the case of PMBB, we used
the imputed array data (GRCh38) for which genotyping and imputation
details have been described previously33. In short, for PMBB, we performed
genotype imputation using Eagle52 and Minimac453 on the TOPMed
Imputation Server54. For sites that could not be successfully imputed, we
obtained a population-specific allele frequency from gnomAD v3.1.155 to
estimate the average contribution of the variant when scoring PRSs. For
Validation Cohorts, we excluded individuals missing genotypes for more
than5%of PRS sites. In caseswhere the sameparticipant datawas present in
multiple datasets within a cohort, we used scores from the dataset with the
smallest number of missing PRS sites.

Use of population descriptors and inference of genetic ancestry
We partitioned individuals from the Development Cohorts (see Model
Developmentbelow) among5ancestry groups basedongenetic similarity to
one of five continental reference populations: African (AFR), Hispanic/
AdmixedAmerican (AMR), East Asian (EAS), European (EUR), and South
Asian (SAS). Genetic ancestry was decomposed into these five ancestry
groups using AIPS56 with the 1KGP as a reference panel. We used the 80%
ancestral fraction as a threshold to classify participants into “pure” ancestry
groups for thepurpose of estimating ancestry specificmodel coefficients (see
Model Development).

Inorder to assess theperformanceof the caPRSandcaIRS in real-world
populations, which represent broader genetic diversity than 5 reference
population groups, we partitioned validation cohorts based on self-
identified ethnicity, without restricting the analysis to genetically “pure”
individuals. The following rules were applied to group and standardize self-
identified ethnicity labels:
(1) Individuals who self-identified as Black, Black British, Caribbean,

African, African-American, or any other Black background were
labeled as Black/African American (or Black/Black British in
case of UKB).

(2) Individuals who self-identified as White, Caucasian, White British,
Irish, or other White background were labeled as White/Caucasian.

(3) Individuals who self-reported as Indian, Pakistani, Bangladeshi were
grouped as South Asian (UKB only).

(4) Individualswho self-identified asChinese,ChineseAmerican, orAsian
(U.S. cohorts; MESA, PMBB) were labeled as East Asian / Asian
American.

(5) Individuals who self-identified as Hispanic or Latino were labeled as
Hispanic.

(6) Finally, individuals with missing ethnicity information or self-
identified as other or one of mixed categories were labeled as “Other”.

Phenotype definitions
CAD designation was standardized across cohorts with diverse phenotypic
data as individuals with myocardial infarction (MI), coronary revascular-
ization, or fatal coronary heart disease (CHD). Standardized codes from
medical records, such as CAD-related International Classification of Dis-
eases, Tenth Revision (ICD-10), or operation codes, were used when
available (I21, I22, I23, I24.1, I25.2). Otherwise, doctor or self-reported data
adjudicated by individual cohort committees were used.

Model development
We undertook a multi-step process to first develop a caPRS for CAD, and
then incorporate this caPRS into a clinical predictionmodel (PCE) that also
includes traditional cardiovascular risk factors (Fig. 4). Model development
comprisedmultiple stages including training of candidate PRSmodels from
GWAS summary statistics, training and selecting ancestry-specific PRS
ensemble models, estimating ancestry-specific PRS ensemble coefficients
for caPRS, and estimating caIRSparameterswhich include theoverall caPRS
effect size and calibration coefficients. The steps were followed by the vali-
dation of the caPRS and caIRS models performance in independent long-
itudinal cohorts.

We constructed multiple internal PRS models using multi-ancestry
genome-wide association study (GWAS) summary statistics for CAD and
type 2 diabetes (T2D), which is a frequently coexisting condition andmajor
risk factor for CAD. We used GWAS summary statistics from CARDIo-
GRAM (EUR cohort)16, Biobank Japan (GWAS cat: GCST90018706; 2
Japanese/EAS cohorts)17, Million Veterans Program (dbGAP study
phs001672.v9.p1; EUR, AFR, AMR cohorts)18, DIAGRAM (GWAS cat:
GCST004773; EUR)19, GERA (GWAS cat: GCST90086068)20, and AFR
population metaanalysis (GWAS cat: GCST008114)21. PRS models were
independently constructed for CADandT2Dusing PRS-CSx57 with a range
of values for the global shrinkage parameter (see Supplementary Table 6 for
the list GWAS studies and corresponding parameter values used in
development).
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PRS centering and standardization were performed as previously
described12. Briefly, to account for ancestry-specific mean and variance,
principal components (PCs)were computed for all individuals byprojecting
their genotypes onto PCs calculated from the 1KGP dataset using the R
package bigsnp58. Each ancestry-specific PRS was then centered by sub-
tracting the PRS predicted from a linear regression of PRS against the first
four PCs in unaffected individuals59. The centered PRS was subsequently
divided by the standard deviation (SD) of the corresponding 1KGP popu-
lation. The scores of PGS catalog models, derived from GWASs indepen-
dent of the validation cohorts, for CAD and T2D models were linearly
combined with PRS-CSx models developed internally. The optimal mixing
weights for PRSs were independently learned for each (genetically inferred)
continental ancestry group (AFR, AMR, EAS, EUR, SAS) using Develop-
ment Cohort 1 (Table 3) via the Elastic Net using the LogisticRegressionCV
function from the sklearn (Python) package with the following hyper-
parameters: penalty=“elasticnet”, solver=“saga”, L1_ratios = [0.0, 0.2, 0.4,
0.6, 0.8, 1], scoring=“roc_auc”. In case of ancestral groups originating from
multiple cohorts (AFR: UKB+ JHS, AMR: UKB+HCHS) an additional
termwas included in the elastic netmodel to adjust for the cohort effect. See
the Supplementary Table 6 for the list of internally and externally developed
PRS models whose scores were used for ensemble development and their
corresponding weights.

The performance of the ancestry-specific ensemble models was com-
pared to the ensemble derived from EUR individuals (largest sample) in the
Development Cohort 2 (Table 3) across five ancestry groups, using multi-
variable logistic regression adjusted for age at enrollment, sex, and first-
degree family history of CAD/CVD (Supplementary Fig. 6).

Cross ancestry polygenic risk score (caPRS)
Weused thebest-performing ensemblemodel for eachancestry to construct
the caPRS. The caPRS is defined as a linear combination of the (ensemble)
PRS, multiplied by the fractional ancestry estimate and the PRS effect size,
which was estimated for each continental ancestry group from the Devel-
opmentCohort 2 usingmultivariable logistic regression, adjusting for age at
enrollment, sex, first-degree family history of CAD (where available) and
cohort. Thismethodology follows the previously described caPRSmodel for
Breast Cancer risk prediction12 and makes use of continuous genetic
ancestry estimates, when calculating the PRS score, obfuscating the need for
fixed ancestry labels at prediction time and naturally accommodating
genetically admixed individuals. We modified our original method by
replacing single best-performing PRS for each population with the best-
performing ensemble PRS score. More specifically the caPRS is defined as:

caPRS ¼
X5

i¼1

βi � f i � PRS ensemblei; ð1Þ

where βi, f i and PRS ensemblei correspond to PRS effect size, fractional
ancestry estimate, and selected PRS ensemble score, respectively, for each
continental ancestry group i.

Cross ancestry integrated risk score (caIRS)
We estimated the effect size associated with the caPRS in Development
Cohort 3 using a multivariable logistic regression including caPRS, age at
enrollment, sex, and cohort. We then calculated a calibration constant
which depends on the absolute 10-year risk estimate from the PCE model.
Finally, we calculated the 10-year CAD risk based on the PCE and caIRS
(PCE combined with the caPRS).

The caIRS combines genetic and clinical information and is defined as
follows:

caIRS ¼ 1� 1� PCEð Þexp β � caPRSþCkð Þ ð2Þ

where PCE is the 10-year risk calculated using the PCE algorithm, β is the
effect size associatedwith caPRS estimated usingDevelopment Cohort 3 via
a logistic regression model adjusted for age at enrollment, sex, and cohort

andCk corresponds to a calibration constantwhich depends on the absolute
10-year risk estimate from the PCE model. More specifically, each Ck was
calculated using unaffected individuals from the Development Cohort 3
within the strata formed by the deciles of the PCE score, such that the
average risk of CAD predicted by the caIRS aligns with the average risk
predicted by the PCE alone for unaffected controls within each strata. This
means that the average contribution of the PRS to the integrated score
within a decile is 1, namely:

E ½expðbeta � caPRSÞ þ Ck� ¼ 1 ð3Þ

for each group k.
The distributions of caPRS, PCE, and caIRS scores are provided in the

Supplementary Content (Supplementary Fig. 7).

Model validation
We evaluated the performance of the caPRS and caIRS using validation
cohorts that were independent from those used to generate caPRS and caIRS
models. According to expert recommendations regarding reporting of poly-
genic scores in risk prediction studies60, we evaluated our models by con-
sidering measures of model discrimination, calibration, and effect size.
Associations of the caPRS with 10-year CAD risk were evaluated in terms of
HR per SD increase in the caPRS with a 95% confidence interval from mul-
tivariable Cox proportional-hazards (PH) models adjusted for age at enroll-
ment and sex. The test statistic was the change in the likelihood deviance
metric between the full model and the appropriate reduced model. The
C-index was used to assessmodel discrimination. In situations where specific
ancestries lacked sufficient statistical power for reliable analyses, we opted to
integrate the effect sizes across studies usingmeta-analyses, suitably adjusting
for the heterogeneity observed among the studies being combined. This
approach enabled us to enhance the robustness and generalizability of our
findings by leveraging the collective power of multiple datasets. We used a
Mantel-Cox log rank test, with caIRS coded as a binary variable, to evaluate
whether 10-year CAD incidence was significantly lower for patients at bor-
derline/intermediate PCE risk (5-20%) with a caIRS score below vs above the
pre-specified risk threshold (20%). Proportional hazards assumptions were
verified for all proposed models using tests and graphs based on the
Schoenfeld residuals. We used the Kaplan-Meier method to estimate the
cumulative incidence ratesof10-yearCADfor subjects above/below the caIRS
score threshold. For caIRS and PCE, we assessed net reclassification
improvement (NRI), sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) using a 20% high risk threshold4. For
additional comparison we also evaluated performance using alternative risk
classification thresholds of 7.5% and 10%.We assessed PCE and caIRSmodel
calibrationby inspecting theconcordancebetween theobservedandpredicted
risks visually andquantitatively via the estimationof calibration intercepts and
slopes. To estimate these parameters, we performed logistic regression with
the predicted probabilities ðYÞ as the independent variable and the observed
outcomes ðYÞ as the dependent variable. More specifically, the calibration
intercept ðβ0Þ was estimated using the following model: logitðYÞ ¼ β0 þ
logitðYÞ and the calibration slope ðβ1Þ from: logitðYÞ ¼ β0 þ β1 � logitðYÞ.

All analyses were performed using R Statistical Software (v4.1.0 or
higher)61.

Data availability
Datasets used for the analyses described in this manuscript were obtained
fromUKBiobankResourceunderApplicationNumber48991anddbGaPat
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap through dbGaP acces-
sion study numbers phs000209.v13.p3, phs000280.v8.p2, phs000810.v1.p1,
phs000287.v7.p1, and phs000286.v6.p2. The Penn Medicine Biobank
genetic data was generated by Regeneron Genetics and made available to
study authors for model validation by Penn Medicine Biobank with the
permission of Regeneron Genetics.

https://doi.org/10.1038/s44325-025-00049-7 Article

npj Cardiovascular Health |            (2025) 2:13 11

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap
www.nature.com/npjcardiohealth


Received: 12 September 2024; Accepted: 22 February 2025;

References
1. National Heart, Lung, and Blood Institute. What Is Coronary Heart

Disease? https://www.nhlbi.nih.gov/health/coronary-heart-disease
(2024).

2. Tsao, C. W. et al. Heart disease and stroke statistics-2023 update: a
report from the American Heart Association. Circulation 147,
e93–e621 (2023).

3. Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/
ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of
blood cholesterol: a report of the American College of Cardiology/
American Heart Association task force on clinical practice guidelines.
Circulation 139, e1082–e1143 (2019).

4. Goff, D. C. Jr et al. 2013 ACC/AHA guideline on the assessment of
cardiovascular risk: a report of the American College of Cardiology/
American Heart Association task force on practice guidelines. J. Am.
Coll. Cardiol. 63, 2935–2959 (2014).

5. Arnett, D. K. et al. 2019 ACC/AHA guideline on the primary prevention
of cardiovascular disease: a report of the American College of
Cardiology/AmericanHeart Association task force on clinical practice
guidelines. J. Am. Coll. Cardiol. 74, e177–e232 (2019).

6. Sussman, J. B. et al. The Veterans Affairs Cardiac Risk Score:
recalibrating the atherosclerotic cardiovascular disease score for
applied use.Med. Care 55, 864–870 (2017).

7. Pennells, L. et al. Equalization of four cardiovascular risk algorithms
after systematic recalibration: individual-participant meta-analysis of
86 prospective studies. Eur. Heart J. 40, 621–631 (2019).

8. Levin, M. G. & Rader, D. J. Polygenic risk scores and coronary artery
disease: ready for prime time? Circulation 141, 637–640 (2020).

9. Patel, A. P. et al. A multi-ancestry polygenic risk score improves risk
prediction for coronary arterydisease.Nat.Med.29, 1793–1803 (2023).

10. Weale, M. E. et al. Validation of an integrated risk tool, including
polygenic risk score, for atherosclerotic cardiovascular disease in
multipleethnicities andancestries.Am.J.Cardiol.148, 157–164 (2021).

11. O’Sullivan, J. W. et al. Polygenic risk scores for cardiovascular
disease: a scientific statement from the American Heart Association.
Circulation 146, e93–e118 (2022).

12. Tshiaba, P. T. et al. Integration of a cross-ancestry polygenic model
with clinical risk factors improvesbreast cancer risk stratification. JCO
Precis. Oncol. 7, e2200447 (2023).

13. US Preventive Services Task Force. et al. Statin use for the primary
preventionof cardiovascular disease in adults:USpreventiveservices
task force recommendation statement. JAMA 328, 746–753 (2022).

14. Mortensen, M. B., Tybjærg-Hansen, A. & Nordestgaard, B. G. Statin
eligibility for primary prevention of cardiovascular disease according
to 2021 European prevention guidelines compared with other
international guidelines. JAMA Cardiol. 7, 836–843 (2022).

15. Aragam, K. G. et al. Limitations of contemporary guidelines for
managing patients at high genetic risk of coronary artery disease. J.
Am. Coll. Cardiol. 75, 2769–2780 (2020).

16. Schunkert, H. et al. Large-scale association analysis identifies 13 new
susceptibility loci for coronary arterydisease.Nat.Genet.43, 333–338
(2011).

17. Sakaue, S. et al. A cross-population atlas of genetic associations for
220 human phenotypes. Nat. Genet. 53, 1415–1424 (2021).

18. Tcheandjieu, C. et al. Large-scale genome-wide association study of
coronary artery disease in genetically diverse populations. Nat. Med.
28, 1679–1692 (2022).

19. Scott, R. A. et al. An expanded genome-wide association study of
type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).

20. Guindo-Martínez, M. et al. The impact of non-additive genetic
associations on age-related complex diseases. Nat. Commun. 12,
2436 (2021).

21. Chen, J. et al. Genome-wide association study of type 2 diabetes in
Africa. Diabetologia 62, 1204–1211 (2019).

22. Li, M. et al. Statins for the primary prevention of coronary heart
disease. Biomed. Res. Int. 2019, 4870350 (2019).

23. Mega, J. L. et al. Genetic risk, coronary heart disease events, and the
clinical benefit of statin therapy: an analysis of primary and secondary
prevention trials. Lancet 385, 2264–2271 (2015).

24. Marston, N. A. et al. Predicting benefit from evolocumab therapy in
patients with atherosclerotic disease using a genetic risk score:
results from the FOURIER trial. Circulation 141, 616–623 (2020).

25. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in
human genetic studies. Cell 177, 26–31 (2019).

26. Tishkoff, S. A. et al. The genetic structure and history of Africans and
African Americans. Science 324, 1035–1044 (2009).

27. Ding, Y. et al. Polygenic scoring accuracy varies across the genetic
ancestry continuum. Nature 618, 774–781 (2023).

28. All ofUsResearchProgram Investigators. et al. The ‘All ofUs’ research
program. N. Engl. J. Med. 381, 668–676 (2019).

29. Gaziano, J.M. et al.MillionVeteranProgram:amega-biobank to study
genetic influences on health and disease. J. Clin. Epidemiol. 70,
214–223 (2016).

30. Linder, J. E. et al. Returning integrated genomic risk and clinical
recommendations: theeMERGEstudy.Genet.Med.25, 100006 (2023).

31. Fry, A. et al. Comparison of sociodemographic and health-related
characteristics of UK biobank participants with those of the general
population. Am. J. Epidemiol. 186, 1026–1034 (2017).

32. Guarischi-Sousa, R. et al. Contemporary polygenic scores of low-
density lipoprotein cholesterol and coronary artery disease predict
coronary atherosclerosis in adolescents and young adults. Circ.
Genom. Precis Med. 16, e004047 (2023).

33. Verma, A. et al. The Penn Medicine BioBank: towards a genomics-
enabled learning healthcare system to accelerate precision medicine
in a diverse population. J. Pers. Med. 12, 1974 (2022).

34. Sudlow, C. et al. UK biobank: an open access resource for identifying
the causesof awide rangeof complexdiseasesofmiddle andold age.
PLoS Med. 12, e1001779 (2015).

35. Conroy, M. C. et al. UK Biobank: a globally important resource for
cancer research. Br. J. Cancer 128, 519–527 (2023).

36. Bycroft, C. et al. TheUKBiobank resourcewith deepphenotyping and
genomic data. Nature 562, 203–209 (2018).

37. About our data. https://www.ukbiobank.ac.uk/enable-your-research/
about-our-data.

38. Bild, D. E. et al. Multi-ethnic study of atherosclerosis: objectives and
design. Am. J. Epidemiol. 156, 871–881 (2002).

39. Olson, J. L., Bild, D. E., Kronmal, R. A. & Burke, G. L. Legacy ofMESA.
Glob. Heart 11, 269–274 (2016).

40. MESA Overview and Protocol. https://www.mesa-nhlbi.org/
aboutMESAOverviewProtocol.aspx.

41. Study Timeline and Procedures. https://www.mesa-nhlbi.org/
aboutMESAStudyTime.aspx.

42. ProjectOverview.https://aric.cscc.unc.edu/aric9/about/project_overview.
43. Sorlie,P.D.etal.Designand implementationof theHispanicCommunity

Health Study/Study of Latinos. Ann. Epidemiol. 20, 629–641 (2010).
44. Study Overview. https://sites.cscc.unc.edu/hchs/StudyOverview.
45. Taylor, H. A. et al. Design and methods of the Jackson Heart Study.

Ethn. Dis. 15, 4–17 (2005).
46. Fuqua, S. R. et al. Methods, response rates, and sample description.

Ethn. Dis. 15, 18–29 (2005).
47. About The JHS. https://www.jacksonheartstudy.org/About/About-

The-JHS.
48. Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion

between genome assemblies. Bioinformatics 30, 1006–1007 (2014).
49. Delaneau, O., Zagury, J.-F., Robinson, M. R., Marchini, J. L. &

Dermitzakis, E. T. Accurate, scalable and integrative haplotype
estimation. Nat. Commun. 10, 5436 (2019).

https://doi.org/10.1038/s44325-025-00049-7 Article

npj Cardiovascular Health |            (2025) 2:13 12

https://www.nhlbi.nih.gov/health/coronary-heart-disease
https://www.nhlbi.nih.gov/health/coronary-heart-disease
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data
https://www.mesa-nhlbi.org/aboutMESAOverviewProtocol.aspx
https://www.mesa-nhlbi.org/aboutMESAOverviewProtocol.aspx
https://www.mesa-nhlbi.org/aboutMESAOverviewProtocol.aspx
https://www.mesa-nhlbi.org/aboutMESAStudyTime.aspx
https://www.mesa-nhlbi.org/aboutMESAStudyTime.aspx
https://www.mesa-nhlbi.org/aboutMESAStudyTime.aspx
https://aric.cscc.unc.edu/aric9/about/project_overview
https://aric.cscc.unc.edu/aric9/about/project_overview
https://sites.cscc.unc.edu/hchs/StudyOverview
https://sites.cscc.unc.edu/hchs/StudyOverview
https://www.jacksonheartstudy.org/About/About-The-JHS
https://www.jacksonheartstudy.org/About/About-The-JHS
https://www.jacksonheartstudy.org/About/About-The-JHS
www.nature.com/npjcardiohealth


50. Rubinacci,S.,Delaneau,O.&Marchini, J.Genotype imputationusing the
positional burrowswheeler transform.PLoSGenet16, e1009049 (2020).

51. UK10KConsortium. et al. TheUK10Kproject identifies rare variants in
health and disease. Nature 526, 82–90 (2015).

52. Loh, P.-R. et al. Reference-based phasing using the Haplotype
Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).

53. Das, S. et al. Next-generation genotype imputation service and
methods. Nat. Genet. 48, 1284–1287 (2016).

54. Taliun, D. et al. Sequencing of 53,831 Diverse Genomes from the
NHLBI TOPMed Program. Nature 590, 290–299 (2021).

55. Chen, S. et al. A genomicmutational constraint map using variation in
76,156 human genomes. Nature 625, 92–100 (2024).

56. Byun, J. et al. Ancestry inference using principal component analysis
and spatial analysis: a distance-based analysis to account for
population substructure. BMC Genomics 18, 789 (2017).

57. Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse
populations. Nat. Genet. 54, 573–580 (2022).

58. Privé, F., Aschard,H., Ziyatdinov, A. &Blum,M.G. B. Efficient analysis
of large-scale genome-wide data with two R packages: bigstatsr and
bigsnpr. Bioinformatics 34, 2781–2787 (2018).

59. Khera, A. V. et al. Whole-genome sequencing to characterize
monogenic and polygenic contributions in patients hospitalized
with early-onset myocardial infarction. Circulation 139, 1593–1602
(2019).

60. Wand, H. et al. Improving reporting standards for polygenic scores in
risk prediction studies. Nature 591, 211–219 (2021).

61. R Core Team. R: A language and environment for statistical
computing. https://www.r-project.org/.

Acknowledgements
The study was funded byMyOme. Medical writing and editorial support was
provided by Lauren Dembeck, PhD, funded by MyOme. The authors thank
the staff andparticipantsof theMulti-EthnicStudyof Atherosclerosis (MESA)
study.MESAand theMESASHAReproject are conducted and supportedby
the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with
MESA investigators. Support for MESA is provided by contracts N01-
HC95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-
95163, N01-HC-95164, N01-HC-95165, N01-HC95166, N01-HC-95167,
N01-HC-95168, N01-HC-95169 and CTSA UL1-RR-024156. Funding for
SHARe genotyping was provided by NHLBI Contract N02-HL-64278. Gen-
otyping was performed at Affymetrix (Santa Clara, California, USA) and the
Broad Institute of Harvard and MIT (Boston, Massachusetts, USA) using the
AffymetrixGenome-WideHumanSNPArray 6.0. The Atherosclerosis Risk in
Communities study has been funded in whole or in part with Federal funds
from the National Heart, Lung, and Blood Institute, National Institute of
Health, Department of Health andHumanServices, under contract numbers
(HHSN268201700001I, HHSN268201700002I, HHSN268201700003I,
HHSN268201700004I, and HHSN268201700005I). The authors thank the
staff and participants of the ARIC study for their important contributions.
Funding for CARe genotyping was provided by NHLBI Contract N01-HC-
65226. The authors thank the staff and participants of the Hispanic Com-
munityHealth Study / Study of Latinos (HCHS/SOL) study. A complete list of
staff and investigators isavailableon thestudywebsitehttp://www.cscc.unc.
edu/hchs/.TheHispanicCommunityHealthStudy/Studyof Latinos is funded
bycontracts from theNationalHeart, Lung, andBlood Institute (NHLBI) to the
University of North Carolina (N01-HC65233), University of Miami (N01-
HC65234), Albert Einstein College of Medicine (N01-HC65235), North-
western University (N01-HC65236), and San Diego State University (N01-
HC65237). The following Institutes/Centers/Offices contribute to the HCHS/
SOL through a transfer of funds to the NHLBI: National Center on Minority
Health and Health Disparities, the National Institute of Deafness and Other
Communications Disorders, the National Institute of Dental and Craniofacial
Research, the National Institute of Diabetes and Digestive and Kidney Dis-
eases, the National Institute of Neurological Disorders and Stroke, and the

OfficeofDietarySupplements. Theauthors thank the staff andparticipantsof
theCardiovascularHealthStudy (CHS). TheCHS issponsoredby theNHLBI.
This research was supported by contracts HHSN268201200036C,
HHSN268200800007C, HHSN268201800001C, N01HC55222,
N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083,
N01HC85086, 75N92021D00006, and grants U01HL080295 and
U01HL130114 from the National Heart, Lung, and Blood Institute (NHLBI),
with additional contribution from the National Institute of Neurological Dis-
orders and Stroke (NINDS). Additional support was provided by
R01AG023629 from theNational InstituteonAging (NIA). A full list of principal
CHS investigators and institutions can be found at CHS-NHLBI.org. The
JacksonHeart Study (JHS) is supported and conducted in collaborationwith
Jackson State University (HHSN268201800013I), Tougaloo College
(HHSN268201800014I), the Mississippi State Department of Health
(HHSN268201800015I/HHSN26800001) and the University of Mississippi
Medical Center (HHSN268201800010I, HHSN268201800011I and
HHSN268201800012I) contracts from the National Heart, Lung, and Blood
Institute (NHLBI) and the National Institute for Minority Health and Health
Disparities (NIMHD). The authors alsowish to thank the staff andparticipants
of the JHS. Funding for CARe genotyping was provided by NHLBI Contract
N01-HC-65226. Molecular data for the Trans-Omics in Precision Medicine
(TOPMed) program was supported by the National Heart, Lung, and Blood
Institute (NHLBI). The Jackson Heart Study (phs000964.v1.p1) was per-
formed at the Northwest Genomics Center (HHSN268201100037C). Core
support including centralized genomic read mapping and genotype calling,
alongwith variant qualitymetrics and filtering were provided by the TOPMed
Informatics Research Center (3R01HL-117626-02S1; contract
HHSN268201800002I). Core support including phenotype harmonization,
data management, sample-identity QC, and general program coordination
were provided by the TOPMed Data Coordinating Center (R01HL-120393;
U01HL-120393; contract HHSN268201800001I). We gratefully acknowl-
edge the studies and participantswhoprovided biological samples and data
for TOPMed.

Author contributions
Study conception and design: Dariusz Ratman, Placede Tshiaba, Michael
Levin, Daniel J Rader, Premal Shah, Matthew Rabinowitz, Akash Kumar,
Kate Im.Collectionandassemblyofdata:DariuszRatman,PlacedeTshiaba,
Jiayi Sun, Michael Levin, Robert Maier, Kate Im. Data analysis and
interpretation: Dariusz Ratman, Placede Tshiaba, Michael Levin, Jiayi Sun,
Tate Tunstall, Matthew Rabinowitz, Akash Kumar, Kate Im. Manuscript
writing: Dariusz Ratman, Placede Tshiaba, Kate Im, Michael Levin. Final
approval ofmanuscript: All authors. Accountable for all aspects of the work:
All authors.

Competing interests
This study was funded by MyOme, Inc. Dariusz Ratman, Placede Tshiaba,
Jiayi Sun, Tate Tunstall, Robert Maier, Premal Shah, Matthew Rabinowitz,
Akash Kumar, and Kate Im are either current or previous employees
of MyOme.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44325-025-00049-7.

Correspondence and requests for materials should be addressed to
Kate Im.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s44325-025-00049-7 Article

npj Cardiovascular Health |            (2025) 2:13 13

https://www.r-project.org/
https://www.r-project.org/
http://www.cscc.unc.edu/hchs/.The
http://www.cscc.unc.edu/hchs/.The
https://doi.org/10.1038/s44325-025-00049-7
http://www.nature.com/reprints
www.nature.com/npjcardiohealth


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s44325-025-00049-7 Article

npj Cardiovascular Health |            (2025) 2:13 14

http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjcardiohealth

	Polygenic risk scores improve CAD risk prediction in individuals at borderline and intermediate clinical risk
	Results
	Predictive power of the caPRS in 10-year incident CAD risk prediction across ethnicities
	Evaluation of the caIRS in comparison to PCE
	Refining CAD risk stratification in intermediate/borderline risk individuals
	Refining CAD risk stratification among Black/African-American population at intermediate/borderline risk

	Discussion
	Methods
	Study populations
	Eligibility criteria
	Genotype imputation
	Use of population descriptors and inference of genetic ancestry
	Phenotype definitions
	Model development
	Cross ancestry polygenic risk score (caPRS)
	Cross ancestry integrated risk score (caIRS)
	Model validation

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




